กำหนดการเชิงเส้น

กำหนดการเชิงเส้น เป็นคณิตศาสตร์ประยุกต์แขนงหนึ่งที่คิดค้นขึ้น เพื่อแก้ปัญหาให้เป็นไปตามจุดประสงค์ของมนุษย์ โดยมีแนวคิดที่ว่า ให้เพียงพออย่างสูงสุดในทรัพยากรที่มีจำกัด สามารถใช้คำนวณเพื่อแก้ปัญหาได้หลายอย่าง เช่น คำนวณการผลิตสินค้าให้ได้มากที่สุด แต่เสียค่าใช้จ่ายน้อยที่สุด,หาวิธีการเคลื่อนย้ายทหารให้มากที่สุดโดยที่เสียค่าใช้จ่ายน้อยที่สุด, ผลิตสินค้าจำนวนน้อยที่สุด แต่ทำกำไรได้มากที่สุด หรือหาว่า หากบริษัทหนึ่งผลิตสินค้า 2 ประเภท ต้องผลิตอย่างละกี่ชิ้นจึงจะได้กำไรสูงสุด เป็นต้น

กำหนดการเชิงเส้น จะอยู่ในรูปแบบทางคณิตศาสตร์ของสมการเชิงเส้นและอสมการเชิงเส้น แล้วหาค่าสูงสุด ต่ำสุดของฟังก์ชันที่สอดคล้องกับสมการ (และอสมการ) ที่กำหนด ตัวแบบคณิตศาสตร์ประกอบด้วย

ฟังก์ชันเชิงเส้น เป็นสมการที่สร้างให้ตรงกับจุดประสงค์ที่ต้องการ เรียกฟังก์ชันนี้ว่า ฟังก์ชันเป้าหมาย โดยจะตั้งสมการขึ้นเพื่อหาค่าสูงสุด หรือต่ำสุด ขึ้นอยู่กับตัวแปร เช่น D = 15x+20y
เงื่อนไขจำกัด (เงื่อนไขบังคับ) ได้แก่อสมการ หรือสมการที่เป็นเงื่อนไขที่กำหนดให้ เป็นเงื่อนไขที่ถูกจำกัดของทรัพยากร หรือตัวแปร เช่น 2x+y=0 , y>=0,x+2y<=80
[แก้] การแก้ปัญหาโจทย์กำหนดการเชิงเส้นกำหนดตัวแปรที่ใช้ในฟังก์ชันเป้าหมายว่า x แทนตัวแปรอะไร y แทนตัวแปรอะไร
สร้างฟังก์ชันเป้าหมายให้สอดคล้องกับที่โจทย์ต้องการ โดยเขียนแบบจำลองทางคณิตศาสตร์
สร้างเงื่อนไขบังคับตามข้อมูลที่โจทย์สั่ง
หาผลลัพธ์โดยวิธีที่ดีและง่ายที่สุดคือ การเขียนกราฟตามเงื่อนไขบังคับ
เมื่อเขียนกราฟแล้ว ให้แรเงาอาณาบริเวณที่เป็นไปได้ ต่อไปให้หาผลลัพธ์ หรือคำตอบที่ดีที่สุดจากคำตอบในอาณาบริเวณที่แรเงานี้ โดยการแทนค่าจุดยอดมุมของรูปเหลี่ยมที่ปิดล้อมบริเวณที่แรเงาไว้ ส่วนที่แรเงาของกราฟ จะเป็นคำตอบที่เป็นไปได้ และค่า (x,y) ที่ทำให้ฟังก์ชันเชิงเส้นมีค่าสูงสุด จะเรียกว่า คำตอบที่เหมาะสมที่สุด
หาพิกัด (x,y) ที่เป็นจุดตัดของกราฟ นำแต่ละจุดไปแทนค่าในฟังก์ชันเป้าหมาย จะได้ค่าสูงสุดหรือต่ำสุดตามต้องการ

ใส่ความเห็น

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / เปลี่ยนแปลง )

Twitter picture

You are commenting using your Twitter account. Log Out / เปลี่ยนแปลง )

Facebook photo

You are commenting using your Facebook account. Log Out / เปลี่ยนแปลง )

Google+ photo

You are commenting using your Google+ account. Log Out / เปลี่ยนแปลง )

Connecting to %s

%d bloggers like this: