เรขาคณิตวิเคราะห์

เรขาคณิตวิเคราะห์ (Analytic Geometry) เป็นคณิตศาสตร์แขนงหนึ่งที่กล่าวถึงจุดบนระนาบ (point and plane)

เรขาคณิตวิเคราะห์จึงแบ่งได้ดังนี้

1. ระบบพิกัดฉาก ประกอบด้วยเส้นตรง สองเส้นเส้นหนึ่งอยู่ในแนวนอน เรียกว่า แกน x อีกเส้นหนึ่งอยู่ในแนวตั้งเรียกว่าแกน y ทั้งสองเส้นนี้ตัดกันเป็นมุมฉาก และเรียกจุดตัดว่า จุดกำเนิด y ควอดรันต์ที่ II ควอดรันต์ที่ I (-,+) (+,+) x ควอดรันต์ที่ III ควอดรันต์ที่ IV (-,-) (+,-) 2. การหาระยะทางระหว่างจุด 2 จุด ถ้า P(x1,y1) และ P(x2,y2) เป็นจุด 2 จุดในระนาบ ระยะทางระหว่างจุด P และจุด Q หาได้โดย

PQ =  (x2-x1)2 + (y2-y1) 2

3. จุดกึ่งกลางระหว่างสองจุด ถ้า P(x1,y1) และ P(x2,y2) เป็นจุด 2 จุดในระนาบและให้ M(x,y) เป็นจุดกึ่งกลางระหว่าง P และ Q เราสามารถหาจุด M ได้ดังนี้

จุดกึ่งกลาง M คือ x1+ x2 , y1+ y2 2 2

4. สมการของเส้นตรง Q(x2,y2) 4.1 ความชัน(slop)=tan=m

Q(x1,y1)

ความชัน = m = y2 – y1 x2 – x1

4.2 สมการเส้นตรงที่ผ่านจุด (x1,y1) และมีความชันเท่ากับ m คือ

y – y1 = m(x – x1)

4.3 สมการเส้นตรงที่มี y -intercept เท่ากับ b และมีความชันเท่ากับ m คือ

y = mx + b

4.4 จาก 4.2 และ 4.3 สามารถเขียนสมการเส้นตรงใหม่ในรูปของ

Ax + By + C = 0

ตัวอย่าง จงหาความชันของเส้นตรง 3x + 4y – 5 = 0 วิธีทำ 4y = -3x + 5 y = -(-3/4)x +(5/4)  ความชันคือ -3/4 4.5 เส้นตรง l1 ขนานกับ l2 ก็ต่อเมื่อ m1=m2 เส้นตรง l1 ตั้งฉากกับ l2 ก็ต่อเมื่อ m1m2 = -1

5. การหาระยะทางจากจุดไปยังเส้นตรง กำหนดให้ l เป็นเส้นตรงที่มีสมการ Ax + By + C = 0 และ P(x1,y1) เป็นที่อยู่นอกเส้น l ดังรูป

P(x1,y1) d l Ax + By + C = 0

ถ้า d เป็นระยะทางจากจุด P ไปยังเส้นตรง l

d = Ax1 + By1 + C  A2 + B2

ใส่ความเห็น

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / เปลี่ยนแปลง )

Twitter picture

You are commenting using your Twitter account. Log Out / เปลี่ยนแปลง )

Facebook photo

You are commenting using your Facebook account. Log Out / เปลี่ยนแปลง )

Google+ photo

You are commenting using your Google+ account. Log Out / เปลี่ยนแปลง )

Connecting to %s

%d bloggers like this: