ระบบจำนวนจริง

การสร้างจากจำนวนตรรกยะจำนวนจริงสามารถสร้างเป็นส่วนสมบูรณ์ของจำนวนตรรกยะ สำหรับรายละเอียดและการสร้างจำนวนจริงวิธีอื่นๆดูที่ construction of real numbers (การสร้างจำนวนจริง)

[แก้] วิธีสัจพจน์ให้ R แทนเซตของจำนวนจริงทั้งหมด แล้ว

เซต R เป็นฟีลด์ หมายความว่ามีการนิยามการบวกและการคูณ และมีคุณสมบัติตามปกติ
ฟีลด์ R เป็นฟีลด์อันดับ หมายความว่ามีอันดับเชิงเส้น (total order) ≥ ซึ่งสำหรับทุกจำนวนจริง x y และ z:
ถ้า x ≥ y แล้ว x + z ≥ y + z
ถ้า x ≥ 0 และ y ≥ 0 แล้ว xy ≥ 0
อันดับนั้นมีความบริบูรณ์เดเดคินท์ (Dedekind-complete) กล่าวคือทุกสับเซตที่ไม่ใช่เซตว่าง S ของ R ซึ่งมีขอบเขตบน ใน R มี ขอบเขตบนน้อยสุด ใน R
คุณสมบัติสุดท้ายนี้เป็นตัวแบ่งแยกจำนวนจริงออกจากจำนวนตรรกยะ ตัวอย่างเช่น เซตของจำนวนตรรกยะที่มีกำลังสองน้อยกว่า 2 มีขอบเขตบน (เช่น 1.5) แต่ไม่มีขอบเขตบนน้อยสุดที่เป็นจำนวนตรรกยะ เพราะว่ารากที่สองของ 2 ไม่เป็นจำนวนตรรกยะ

จำนวนจริงนั้นมีคุณสมบัติข้างต้นเป็นเอกลักษณ์ พูดอย่างถูกต้องได้ว่า ถ้ามีฟีลด์อันดับที่มีความบริบูรณ์เดเดคินท์ 2 ฟีลด์ R1 และ R2 จะมีสมสัณฐานฟีลด์ที่เป็นเอกลักษณ์จาก R1 ไปยัง R2 ทำให้เราสามารถมองว่าทั้งคู่เป็นวัตถุเดียวกัน

ใส่ความเห็น

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / เปลี่ยนแปลง )

Twitter picture

You are commenting using your Twitter account. Log Out / เปลี่ยนแปลง )

Facebook photo

You are commenting using your Facebook account. Log Out / เปลี่ยนแปลง )

Google+ photo

You are commenting using your Google+ account. Log Out / เปลี่ยนแปลง )

Connecting to %s

%d bloggers like this: