รูปสามเหลี่ยม

รูปสามเหลี่ยม เป็นหนึ่งในรูปร่างพื้นฐานในเรขาคณิต คือรูปหลายเหลี่ยมซึ่งมี 3 มุมหรือจุดยอด และมี 3 ด้านหรือขอบที่เป็นส่วนของเส้นตรง รูปสามเหลี่ยมที่มีจุดยอด A, B, และ C เขียนแทนด้วย  ABC

ในเรขาคณิตแบบยุคลิด จุด 3 จุดใดๆ ที่ไม่อยู่ในเส้นตรงเดียวกัน จะสามารถสร้างรูปสามเหลี่ยมได้เพียงรูปเดียว และเป็นรูปที่อยู่บนระนาบเดียว (เช่นระนาบสองมิติ)

กำหนดการเชิงเส้น

กำหนดการเชิงเส้น เป็นคณิตศาสตร์ประยุกต์แขนงหนึ่งที่คิดค้นขึ้น เพื่อแก้ปัญหาให้เป็นไปตามจุดประสงค์ของมนุษย์ โดยมีแนวคิดที่ว่า ให้เพียงพออย่างสูงสุดในทรัพยากรที่มีจำกัด สามารถใช้คำนวณเพื่อแก้ปัญหาได้หลายอย่าง เช่น คำนวณการผลิตสินค้าให้ได้มากที่สุด แต่เสียค่าใช้จ่ายน้อยที่สุด,หาวิธีการเคลื่อนย้ายทหารให้มากที่สุดโดยที่เสียค่าใช้จ่ายน้อยที่สุด, ผลิตสินค้าจำนวนน้อยที่สุด แต่ทำกำไรได้มากที่สุด หรือหาว่า หากบริษัทหนึ่งผลิตสินค้า 2 ประเภท ต้องผลิตอย่างละกี่ชิ้นจึงจะได้กำไรสูงสุด เป็นต้น

กำหนดการเชิงเส้น จะอยู่ในรูปแบบทางคณิตศาสตร์ของสมการเชิงเส้นและอสมการเชิงเส้น แล้วหาค่าสูงสุด ต่ำสุดของฟังก์ชันที่สอดคล้องกับสมการ (และอสมการ) ที่กำหนด ตัวแบบคณิตศาสตร์ประกอบด้วย

ฟังก์ชันเชิงเส้น เป็นสมการที่สร้างให้ตรงกับจุดประสงค์ที่ต้องการ เรียกฟังก์ชันนี้ว่า ฟังก์ชันเป้าหมาย โดยจะตั้งสมการขึ้นเพื่อหาค่าสูงสุด หรือต่ำสุด ขึ้นอยู่กับตัวแปร เช่น D = 15x+20y
เงื่อนไขจำกัด (เงื่อนไขบังคับ) ได้แก่อสมการ หรือสมการที่เป็นเงื่อนไขที่กำหนดให้ เป็นเงื่อนไขที่ถูกจำกัดของทรัพยากร หรือตัวแปร เช่น 2x+y=0 , y>=0,x+2y<=80
[แก้] การแก้ปัญหาโจทย์กำหนดการเชิงเส้นกำหนดตัวแปรที่ใช้ในฟังก์ชันเป้าหมายว่า x แทนตัวแปรอะไร y แทนตัวแปรอะไร
สร้างฟังก์ชันเป้าหมายให้สอดคล้องกับที่โจทย์ต้องการ โดยเขียนแบบจำลองทางคณิตศาสตร์
สร้างเงื่อนไขบังคับตามข้อมูลที่โจทย์สั่ง
หาผลลัพธ์โดยวิธีที่ดีและง่ายที่สุดคือ การเขียนกราฟตามเงื่อนไขบังคับ
เมื่อเขียนกราฟแล้ว ให้แรเงาอาณาบริเวณที่เป็นไปได้ ต่อไปให้หาผลลัพธ์ หรือคำตอบที่ดีที่สุดจากคำตอบในอาณาบริเวณที่แรเงานี้ โดยการแทนค่าจุดยอดมุมของรูปเหลี่ยมที่ปิดล้อมบริเวณที่แรเงาไว้ ส่วนที่แรเงาของกราฟ จะเป็นคำตอบที่เป็นไปได้ และค่า (x,y) ที่ทำให้ฟังก์ชันเชิงเส้นมีค่าสูงสุด จะเรียกว่า คำตอบที่เหมาะสมที่สุด
หาพิกัด (x,y) ที่เป็นจุดตัดของกราฟ นำแต่ละจุดไปแทนค่าในฟังก์ชันเป้าหมาย จะได้ค่าสูงสุดหรือต่ำสุดตามต้องการ

แคลลูลัส

แคลคูลัส เป็นสาขาหลักของคณิตศาสตร์ซึ่งพัฒนามาจากพีชคณิต เรขาคณิต และปัญหาทางฟิสิกส์ แคลคูลัสมีต้นกำเนิดจากสองแนวคิดหลัก ดังนี้

แนวคิดแรกคือ แคลคูลัสเชิงอนุพันธ์ (Differential Calculus) เป็นทฤษฎีที่ว่าด้วยอัตราการเปลี่ยนแปลง และเกี่ยวข้องกับการหาอนุพันธ์ของฟังก์ชันทางคณิตศาสตร์ ตัวอย่างเช่น การหา ความเร็ว, ความเร่ง หรือความชันของเส้นโค้ง บนจุดที่กำหนดให้. ทฤษฎีของอนุพันธ์หลายส่วนได้แรงบันดาลใจจากปัญหาทางฟิสิกส์

แนวคิดที่สองคือ แคลคูลัสเชิงปริพันธ์ (Integral Calculus) เป็นทฤษฎีที่ได้แรงบันดาลใจจากการคำนวณหาพื้นที่หรือปริมาตรของรูปทรงทางเรขาคณิตต่าง ๆ. ทฤษฎีนี้ใช้กราฟของฟังก์ชันแทนรูปทรงทางเรขาคณิต และใช้ทฤษฎีปริพันธ์ (หรืออินทิเกรต) เป็นหลักในการคำนวณหาพื้นที่และปริมาตร

ทั้งสองแนวคิดที่กำเนิดจากปัญหาที่ต่างกันกลับมีความสัมพันธ์กันลึกซึ้ง โดยทฤษฎีบทมูลฐานของแคลคูลัสกล่าวว่า แท้จริงแล้วทฤษฎีทั้งสองเปรียบเสมือนเป็นด้านทั้งสองของเหรียญอันเดียวกัน นั่นคือเป็นสิ่งเดียวกันเพียงแต่มองคนละมุมเท่านั้น (โดยคร่าว ๆ เรากล่าวได้ว่าอนุพันธ์และปริพันธ์เป็นฟังก์ชันผกผันของกันและกัน). ในการสอนแคลคูลัสเพื่อความเข้าใจตัวทฤษฎีอย่างลึกซึ้ง ควรกล่าวถึงทั้งสองทฤษฎีและความสัมพันธ์นี้ก่อน แต่การศึกษาในปัจจุบันมักจะกล่าวถึงแคลคูลัสเชิงอนุพันธ์ก่อนเพียงอย่างเดียว เนื่องจากนำไปใช้งานได้ง่ายกว่า

อนึ่ง การศึกษาแคลคูลัสอย่างละเอียดในเวลาต่อมา ได้ทำให้เกิดศาสตร์ใหม่ ๆ ทางคณิตศาสตร์มากมาย เช่น คณิตวิเคราะห์ และ ทฤษฎีการวัด เป็นต้น

ค่าเบี่ยงเบนมาตรฐาน

ค่าเบี่ยงเบนมาตรฐาน หรือ ส่วนเบี่ยงเบนมาตรฐาน หรือ ความเบี่ยงเบนมาตรฐาน (อังกฤษ: standard deviation: s.d.) ในทางสถิติศาสตร์และความน่าจะเป็น เป็นการวัดการกระจายแบบหนึ่งของกลุ่มข้อมูล สามารถนำไปใช้กับการแจกแจงความน่าจะเป็น ตัวแปรสุ่ม ประชากร หรือมัลติเซต ค่าเบี่ยงเบนมาตรฐานมักเขียนแทนด้วยอักษรกรีกซิกมาตัวเล็ก (σ) นิยามขึ้นจากส่วนเบี่ยงเบนแบบ root mean square (RMS) กับค่าเฉลี่ย หรือนิยามขึ้นจากรากที่สองของความแปรปรวน

ค่าเบี่ยงเบนมาตรฐานคิดค้นโดย ฟรานซิส กาลตัน (Francis Galton) ในช่วงปลายคริสต์ทศวรรษ 1860 [1] เป็นการวัดการกระจายทางสถิติที่เป็นปกติทั่วไป ใช้สำหรับเปรียบเทียบว่าค่าต่างๆ ในเซตข้อมูลกระจายตัวออกไปมากน้อยเท่าใด หากข้อมูลส่วนใหญ่อยู่ใกล้ค่าเฉลี่ยมาก ค่าเบี่ยงเบนมาตรฐานก็จะมีค่าน้อย ในทางกลับกัน ถ้าข้อมูลแต่ละจุดอยู่ห่างไกลจากค่าเฉลี่ยเป็นส่วนมาก ค่าเบี่ยงเบนมาตรฐานก็จะมีค่ามาก และเมื่อข้อมูลทุกตัวมีค่าเท่ากันหมด ค่าเบี่ยงเบนมาตรฐานจะมีค่าเท่ากับศูนย์ นั่นคือไม่มีการกระจายตัว คุณสมบัติที่เป็นประโยชน์อย่างหนึ่งก็คือ ค่าเบี่ยงเบนมาตรฐานใช้หน่วยอันเดียวกันกับข้อมูล แต่กับความแปรปรวนนั้นไม่ใช่

เมื่อตัวอย่างของข้อมูลกลุ่มหนึ่งถูกเลือกมาจากประชากรทั้งหมด ค่าเบี่ยงเบนมาตรฐานของประชากรสามารถประมาณค่าได้จากค่าเบี่ยงเบนมาตรฐานของกลุ่มตัวอย่างนั้น

จำนวนเชิงซ้อน

จำนวนเชิงซ้อน (อังกฤษ : complex number) ในทางคณิตศาสตร์ คือ เซตที่ต่อเติมจากเซตของจำนวนจริงโดยเพิ่มจำนวน ซึ่งทำให้สมการ เป็นจริง และหลังจากนั้นเพิ่มสมาชิกตัวอื่นๆ เข้าไปจนกระทั่งเซตที่ได้ใหม่มีสมบัติปิดภายใต้การบวกและการคูณ จำนวนเชิงซ้อน ทุกตัวสามารถเขียนอยู่ในรูป โดยที่ และ เป็นจำนวนจริง โดยเราเรียก และ ว่าส่วนจริง (real part) และส่วนจินตภาพ (imaginary part) ของ ตามลำดับ

เซตของจำนวนเชิงซ้อนทุกตัวมักถูกแทนด้วยสัญลักษณ์ จากนิยามข้างต้นเราได้ว่าเซตของจำนวนจริงเป็นสับเซตของเซตของจำนวนเชิงซ้อน ดังนั้นจำนวนจริงทุกตัวเป็นจำนวนเชิงซ้อน เราสามารถบวก ลบ คูณ และหารสมาชิกสองตัวใดๆ ของเซตของจำนวนเชิงซ้อนได้ (เว้นแต่ในกรณีที่ตัวหารคือศูนย์) และผลลัพธ์ที่ได้จำเป็นจำนวนเชิงซ้อนเสมอ ดังนั้นในทางคณิตศาสตร์เราจึงกล่าวว่าเซตของจำนวนเชิงซ้อนเป็นฟีลด์ นอกจากนี้เซตของจำนวนเชิงซ้อนยังมีสมบัติปิดทางพีชคณิต (algebraically closed) กล่าวคือ พหุนามที่มีสัมประสิทธิ์เป็นจำนวนเชิงซ้อนจะมีราก (พหุนาม)เป็นจำนวนเชิงซ้อนด้วย สมบัตินี้เป็นที่รู้จักในชื่อทฤษฎีบทมูลฐานของพีชคณิต

นอกจากนี้ ในทางคณิตศาสตร์แล้วคำว่า “เชิงซ้อน” ถูกใช้เป็นคำคุณศัพท์ที่มีความหมายว่าฟีลด์ของตัวเลขที่เราสนใจคือฟีลด์ของจำนวนเชิงซ้อน ยกตัวอย่างเช่น การวิเคราะห์เชิงซ้อน, พหุนามเชิงซ้อน, แมทริกซ์เชิงซ้อน, และพีชคณิตลีเชิงซ้อน เป็นต้น

การสำรวจความคิดเห็นหรือโพล(poll)

การสำรวจความคิดเห็นหรือโพล (poll) เป็นวิธีเก็บรวบรวมข้อมูล โดยการติดต่อโดยตรงกับผู้ให้ข้อมูลหรือผู้ตอบ จากการศึกษาประวัติความเป็นมาพบว่า มนุษย์ชาติได้ใช้การสำรวจความคิดเห็นมาเป็นเวลานานตั้งแต่สมัยโรมและอียิปต์ โดยพบหลักฐานมีการทำสำมะโนประชากร ซึ่งเป็นการทำสำมะโนประชากรทั้งหมด เพื่อจะนำข้อมูล/ข่าวสารที่ได้ไปใช้ในการเก็บภาษี เกณฑ์ทหาร และใช้ในวัตถุประสงค์ทางด้านการบริหารอื่นๆ
ความคิดเห็นอย่างง่าย ไว้ในกลุ่มสาระการเรียนรู้คณิตศาสตร์ ลักษณะสำคัญของการสำรวจโดยการสุ่มตัวอย่าง คือ การใช้แบบสอบถาม หรือแบบสัมภาษณ์ ซึ่งอาจกระทำได้หลายวิธี เช่น ให้ผู้ตอบกรอกข้อมูลเอง หรือตอบการสัมภาษณ์ เป็นต้น ดังนั้น การสำรวจการสำรวจจึงเหมาะสำหรับรวบรวมข้อมูลจากหน่วยวิเคราะห์ที่เป็นบุคคล

ลำดับ

ลำดับ (Sequence) คือ ฟังก์ชันที่มีโดเมนเป็นสับเซตของจำนวนเต็มบวก และ
มีเรนจ์เป็นเซตของจำนวนจริง โดย
ถ้าโดเมนเท่ากับ {1, 2, 3, …, n} จะเรียกลำดับนั้นว่า ลำดับจำกัด
ถ้าโดเมนเท่ากับ {1, 2, 3, …} จะเรียกลำดับนั้นว่า ลำดับอนันต์

Previous Older Entries

ติดตาม

Get every new post delivered to your Inbox.